Reg. No. :						
------------	--	--	--	--	--	--

Question Paper Code: 30939

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Third Semester

Electronics and Communication Engineering

EC 2204 — SIGNALS AND SYSTEMS

(Common to Biomedical Engineering)

(Regulation 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Give the mathematical and graphical representation of continuous time and discrete time unit impulse function.
- 2. What are the conditions for a system to be LTI system?
- 3. State the time scaling property of Laplace transform.
- 4. What is the Fourier transform of a DC signal of amplitude 1?
- 5. List the properties of convolution integral.
- 6. State the significance of impulse response.
- 7. Define DTFT and inverse DTFT.
- 8. State the convolution property of the z-transform.
- 9. List the advantages of the state variable representation of a system.
- 10. Find the system function for the given difference equation $y(n) = 0.5 \ y(n-1) + x(n)$.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Find the even and odd components of the signal $x(n) = \{1, 0, -1, 2, 3\}$. (8)
 - (ii) Find the fundamental period of the signal $x(t) = e^{j\frac{7\pi}{3}n}$. (8)

Or

- (b) (i) Check the system $y(n) = \log_{10} |x(n)|$ is linear, time invariant, causal and static. (10)
 - (ii) Find the summation $\sum_{n=0}^{5} \delta(n+1)2^{n}$. (6)
- 12. (a) (i) Prove the scaling and time shifting properties of Laplace transform. (8)
 - (ii) Determine the Laplace transform of $x(t) = e^{-at} \cos \omega t \ u(t)$. (8)

Or

- (b) (i) State and prove the Fourier transform of the following signal in terms of $X(j\omega)$; $x(t-t_0)$, $x(t)e^{j\omega t}$. (8)
 - (ii) Find the complex exponential Fourier series coefficient of the signal $x(t) = \sin 3\pi t + 2\cos 4\pi t$. (8)
- 13. (a) (i) Determine the impulse response h(t) of the system given by the differential equation $\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = x(t)$ with all initial conditions to be zero. (8)
 - (ii) Obtain the direct form I realization of

$$\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 4y(t) = \frac{dx(t)}{dt}.$$
 (8)

Or

2

- (b) The system produces the output $y(t) = e^{-t}u(t)$ for an input $x(t) = e^{-2t}u(t)$. Determine
 - (i) frequency response
 - (ii) magnitude and phase of the response
 - (iii) the impulse response. (16)

- 14. (a) (i) Determine the discrete time Fourier transform of $x(n) = a^{|n|}, |a| < 1$.
 - (ii) Find the z transform and ROC of the sequence $x(n) = r^n \cos(n\theta)u(n)$. (8)

Or

- (b) (i) State and prove the following properties of z transform
 - (1) Linearity
 - (2) Time shifting
 - (3) Differentiation
 - (4) Correlation. (8)
 - (ii) Find the inverse z-transform of the function

$$X(z) = \frac{1+z^{-1}}{\left(1-\frac{2}{3}z^{-1}\right)^2}ROC|z| > \frac{2}{3}.$$
(8)

- 15. (a) (i) Find the system function and the impulse response h(n) for a system described by the following input-output relationship $y(n) = \frac{1}{3}y(n-1) + 3x(n).$ (6)
 - (ii) A linear time-invariant system is characterized by the system function

$$H(z) = \frac{3 - 4z^{-1}}{1 - 3.5z^{-1} + 1.5z^{-2}}$$

Specify the ROC of H(z) and determine h(n) for the following conditions

- (1) The system is stable
- (2) The system is causal
- (3) The system is anti-causal.

Or

- (b) (i) Derive the necessary and sufficient condition for BIBO stability of an LSI system. (6)
 - (ii) Draw the direct form, cascade form and parallel form block diagrams of the following system function: (10)

$$H(z) = \frac{1}{\left(1 + \frac{1}{2}z^{-1}\right)\left(1 - \frac{1}{4}z^{-1}\right)}.$$

(10)